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Abstract. Interatomic potentials are determined in the framework of a shell model used to
simulate the structural instabilities, dynamical properties, and phase transition sequence of BaTiO3.
The model is developed from first-principles calculations by mapping the potential energy surface
for various ferroelectric distortions. The parameters are obtained by performing a fit of interatomic
potentials to this energy surface. Several zero-temperature properties of BaTiO3, which are of
central importance, are correctly simulated in the framework of our model. The phase diagram as
a function of temperature is obtained through constant-pressure molecular dynamics simulations,
showing that the non-trivial phase transition sequence of BaTiO3 is correctly reproduced. The
lattice parameters and expansion coefficients for the different phases are in good agreement with
experimental data, while the theoretically determined transition temperatures tend to be too small.

1. Introduction

Despite sharing a common formula ABO3 and a high-temperature cubic phase, the ferroelectric
and related perovskites exhibit a variety of structural phase transitions. The ideal cubic structure
displays a wide variety of energy instabilities. These may involve rotation and distortions of
the oxygen octahedra as well as displacement of the cations from their ideal sites.

Among the ferroelectric perovskites, BaTiO3 has been one of the most exhaustively
studied materials. At high temperatures, it has the classic perovskite structure. This is
cubic centrosymmetric, with the Ba at the corners, Ti at the centre, and oxygens at the face
centres. However, as the temperature is lowered, it goes through a succession of ferroelectric
phases with spontaneous polarizations along the [001], [011], and [111] directions of the
cubic cell. These polarizations arise from net displacements of the cations with respect to the
oxygen octahedra along the above directions. Each ferroelectric phase involves also a small
homogeneous deformation which can be thought of as an elongation of the cubic unit cell
along the corresponding polarization direction. Thus the system becomes tetragonal at 393 K,
orthorhombic at 278 K, and rhombohedral below 183 K.

First-principles calculations have contributed greatly to the understanding of the origins
of these structural phase transitions, providing considerable insight into the nature of the
ferroelectric instabilities. These methods are based upon a full solution for the quantum
mechanical ground state of the electron system within the local density approximation (LDA)
to density functional theory (DFT). The calculations for BaTiO3 indicate that the ferroelectric
instability arises from a delicate cancellation between short-range repulsive and ionic forces,
demonstrating that the hybridization between the titanium 3d states and the oxygen 2p states
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is essential for ferroelectricity [1,2]. This hybridization is also responsible for the giant values
of the Born effective charges in ABO3 perovskites [3–6].

The two more widely used approximations to DFT, LDA and GGA (generalized gradient
approximation), underestimate and overestimate the equilibrium volume of ferroelectric
perovskites [7, 8]. As a result, quantities that depend sensitively on the lattice constant, such
as ferroelectric instabilities, are seriously affected when they are evaluated at the theoretical
equilibrium volume. On the other hand, the results are closer to the experimental behaviour if
one works at the experimental lattice constants.

Although first-principles methods are extremely precise, they are restricted to studying
zero-temperature properties. For the study of the thermal behaviour of perovskites, a very
successful approach has been developed on the grounds of effective Hamiltonians. In this
approach, a model Hamiltonian is written as a function of a reduced number of degrees of
freedom (a local soft-mode amplitude vector and a local strain tensor), and the Hamiltonian
parameters are determined in order to reproduce the spectrum of low-energy excitations of a
given material as obtained from first-principles calculations. This approach has been applied
with considerable success to several ferroelectric materials, including BaTiO3 [9].

Atomistic simulation methods are well known to play an important role in solid-state and
material sciences. The traditional approach consists in adjusting unknown model parameters
to macroscopic crystal properties. The success and scope of the field is evident from the large
number of investigations on complex oxides crystals. In this way, Lewis and Catlow [10]
developed a shell model fitted for BaTiO3 to reproduce its lattice spacing, elastic properties,
and dielectric constants. This model has been applied recently to the study of point defects [11]
and surface structure [12].

Regarding dynamical properties, the most successful approach to the lattice dynamics
study of ferroelectric perovskites has been carried out in the framework of the non-linear
oxygen polarizability model [13]. In this shell model, an anisotropic core–shell interaction is
considered at the O2− ions, with an harmonic core–shell interaction on the O–A planes, and a
fourth-order core–shell interaction along the O–B bond. The model parameters were obtained
by fitting experimental phonon dispersion curves, and the soft-mode temperature dependence
was studied within the self-consistent phonon approximation. This model has been applied to
several ferroelectric perovskites [14–17], including BaTiO3 [18].

Although both above-mentioned shell models fitted for BaTiO3 reproduce several
properties of its cubic phase, they do not describe its structural instabilities and phase transition
sequence. Nowadays it is possible to perform first-principles calculations on complex phases,
and more reliable potentials can be derived. However, obtaining accurate interatomic potentials
which are able to describe the structural instabilities of ABO3 perovskites constitutes a
challenging problem.

The goal of this work is to obtain an atomistic model for BaTiO3 which describes accurately
its dynamical properties, energy instabilities, and phase transition sequence. To this end, we
develop a shell model from first-principles calculations by mapping the potential energy surface
for various configurations of some carefully selected atomic displacements. The potential
parameters are obtained by performing a fit of interatomic potentials to this energy surface.
The temperature-driven structural transitions are then investigated through molecular dynamics
simulations.

2. Model and computational details

For the atomistic simulation we chose the non-linear oxygen polarizability model previously
applied to BaTiO3 [18], since this model provided an accurate description of its lattice
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dynamics. Here each ion is modelled as a massive core linked to a massless shell. An
anisotropic core–shell interaction is considered at the O2− ions, with a fourth-order core–shell
interaction along the O–Ti bond. This emphasizes the large anisotropic polarization effects at
the oxygens produced by variations of the O–B distance [16]. Such effects are expected in
view of the strong environment-dependent oxygen polarizability and its enhancement through
hybridization between oxygen p and transition metal d orbitals. The Ba and Ti ions are
considered isotropically polarizable.

The first-principles total-energy calculations were performed within the LDA to DFT,
using the highly precise full-potential linear augmented-plane-wave (LAPW) method. We use
the WIEN97 implementation of the method [19] which allows the inclusion of local orbitals
(LO) in the basis, making possible a consistent treatment of semicore and valence states in one
energy window, hence ensuring proper orthogonality. The Ceperley and Alder [20] exchange–
correlation potential for the many-body interactions between electrons, as parametrized by
Perdew and Zunger [21], was used.

Muffin-tin sphere radii(Ri) = 2.0, 1.95 and 1.50 au were used for Ba, Ti and O, resp-
ectively. The value of the parameterRKmax , which controls the size of the basis sets in
these calculations, was chosen to be 8. This gives well converged basis sets consisting of
approximately 1100 LAPW functions plus local orbitals.

We introduced LO to include the following orbitals in the basis set: Ba 5s, 5p and 4d; Ti
3s and 3p; and O 2s. Integrations in reciprocal space were performed using the special-points
method. We used 6× 6× 6 meshes which represent 250k-points in the first Brillouin zone.
Convergence tests indicate that only small changes result from increasing to a denserk-mesh.

In order to better quantify the ferroelectric instabilities of the cubic phase, we determined
the phonon frequencies and polarizations of the infrared-active015 modes, which include
the ‘ferroelectric soft’ mode, by calculating atomic forces for several small displacements
(∼0.01 Å) consistent with the symmetry of the mode. From the force as a function of
displacement, the dynamical matrix was constructed and diagonalized. Finally, the total
energy is evaluated as a function of the ferroelectric soft-mode displacement pattern for
different directions in the cubic phase. We analyse also the effects of the tetragonal strain
by performing the [001] soft-mode displacements at a lattice parameter ratioc/a = 1.01 with
the same primitive-cell volume.

The shell-model parameters were initially taken from set II in reference [18]. For a
numerical simulation of the system across its different phases it is necessary to replace the
harmonic force constants (HFC) of the model by pairwise interatomic potentials. Since the
HFC for the pairs Ti–O and Ba–O correspond to repulsive interaction, we choose for these
the Born–Mayer formV (r) = ae(−r/ρ), which is usual for ionic crystals. For the pair O–O,
however, the HFC correspond to an attractive interaction, a fact which is commonly observed in
oxides. Therefore we consider in this case a Buckingham potential,V (r) = ae(−r/ρ) − c/r6.
The Born–Mayer potential parametersa and ρ for the Ti–O and Ba–O interactions were
determined from the corresponding transverse and longitudinal HFC. In the case of the O–O
interaction, we need to fix one of the Buckingham parameters to obtain the other two from the
HFC. Thus we select an initial value ofc which leads to reasonable values of the parameters
a andρ.

Then the potential energy of the model was evaluated for the same displacement patterns
as were employed in theab initio total-energy calculations. For each given core configuration
the shell coordinates were obtained by solving the adiabatic condition iteratively by a steepest-
descent procedure. The results obtained with the initial model parameter set showed serious
discrepancies with theab initio results; in particular, the sequence of energy minima in [001],
[011] and [111] directions was not in the same order. Thus we modified some model parameters
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in order to fit the model energy behaviour to theab initio results. While doing this, we also took
care to ensure that the equilibrium lattice constant of the model in the cubic phase reproduces
the extrapolation to 0 K of the experimental lattice constant in the cubic phase, which yields
a = 3.995 Å [22]

It is important to remark that one cannot afford to reproduce ‘spot-on’ theab initio total-
energy surface with such simple interatomic potentials. In addition, the adjustment of the
potentials is not a straightforward and easy procedure, because all pair potentials and core–
shell coupling constants contribute to the total energy of a given distorted lattice structure. So,
the goal was to obtain a model which reproduces, as closely as possible, the energetics and
instabilities calculated by the LAPW method.

3. Results

By modifying the potential parameters initially determined, we obtain the energy behaviour
shown in figure 1 for various structural distortions. The calculations were performed at the
experimental primitive-cell volume for 0 K, which corresponds to a cubic lattice constanta =
4.003 Å [23]. The results obtained using the model are compared with the LAPW calculations
for the amplitudes of (001), (011), and (111) ferroelectric mode normal coordinates, which
are obtained from the following LDA eigenvectors:eBa = −0.017, eTi = −0.660, eOz

=
0.644, eOy

= eOx
= 0.273. For the sake of simplicity, these are represented on the abscissa

of the figure through the Ti displacement relative to Ba. A satisfactory overall agreement is
achieved. The model yields clear ferroelectric instabilities with similar energetics and minima
locations to the LAPW calculation. Energy lowerings of≈1.2, 1.65 and 1.9 mRyd/cell are
obtained for the (001), (011), and (111) ferroelectric mode displacements, respectively; this
is consistent with the experimentally observed phase transition sequence. Concerning the
energetics for the (001) displacements, it can be also seen in figure 1 that the effect of the
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Figure 1. Total energy as a function of the ferroelectric mode displacements along the [001] (left
panel), [011], and [111] (right panel) directions. Energies for [001] displacements in a tetragonal
strained structure are plotted in the left panel. The ferroelectric normal coordinate is represented
through the Ti-relative-to-Ba ionic shifts. The energies are referred to the cubic structure. The
results of the LAPW calculation are denoted by the various symbols (+,•, 4,�) in both panels.
In the left panel, full (broken) lines correspond to the strained (unstrained) structure. In the right
panel, full (broken) lines correspond to the [111] ([011]) direction.
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tetragonal strain is to stabilize these displacements with a deeper minimum and a higher energy
barrier at the centrosymmetric positions. A similar feature is observed for the orthorhombic
strain, while an almost negligible effect on the total energies for the rhombohedral strain is
observed. The resulting model potential parameters obtained by the fitting procedure are listed
in table 1. We remark that the most significant changes were performed in the Ti–O interaction
and the core–shell couplings at the oxygen ion, while only slight modifications were introduced
in the Ba–O and O–O potential parameters.

Table 1. Potential parameters of the shell model.a, ρ, c: Buckingham parameters;Z, Y : ionic and
shell charges;K2,K4: on-site core–shell force constants. The symbols‖ and⊥ refer to directions
parallel and perpendicular to the Ti–O bond, respectively.

Interaction a (eV) ρ (Å) c (eV Å−6) Ion Z (|e|) Y (|e|) K2 (eV Å−2) K4 (eV Å−4)

Ba–O 864.536 0.38729 0.0 Ba 1.86 −3.76 251
Ti–O 4526.635 0.25239 0.0 Ti 3.18 −1.58 321
O–O 4102.743 0.29581 300.0 O −1.68 −2.59 31.00 ‖ 3000.00 ‖

101.27⊥

The bulk modulus, as inab initio calculations, can be obtained from the evaluation of the
total energy as a function of the uniform volume expansion for the cubic phase. The model
calculations yield a lattice parameter of 3.99 Å for the static cubic structure. The bulk modulus
evaluated at this equilibrium volume is 226 GPa, which agrees fairly well with the LDA value
of 195 GPa [8]. The detailed behaviour of the energy as a function of the cubic lattice parameter
a is shown in figure 2, where the model’s results are compared with LDA calculations. In order
to better compare the results, the energy is plotted as a function ofa − aeq , whereaeq is the
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Figure 2. Total energy as a function of the lattice parametera for cubic BaTiO3. In order to better
compare the results, the energy is plotted as a function ofa − aeq , whereaeq is the equilibrium
lattice parameter obtained within each approach: 3.99 Å for the shell model, and 3.94Å for the
LDA calculations.
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equilibrium lattice parameter obtained within each approach: 3.99 Å for the shell model, and
3.94 Å for the LDA calculations. The agreement is again very satisfactory.

Another interesting test of the resulting model concerns its phonon dispersion relations.
A first-principles linear response calculation of the phonon dispersion curves of cubic BaTiO3,
using the plane-wave pseudopotential approach, revealed the presence of structural instabilities
with pronounced two-dimensional character in the Brillouin zone, corresponding to chains of
displaced Ti ions oriented along the [001] directions [24]. The same wave-vector dependence
of the instabilities had been previously found in KNbO3 through a linear response approach
based on a LAPW calculation [25]. To check whether our model is able to reproduce such
kinds of instability, we compute the phonon dispersion curves of the cubic structure at the same
lattice constant as was used in the previous work [24], i.e. the experimental valuea = 4.00 Å.
The result is shown in figure 3. An excellent agreement with theab initio linear response
calculation is achieved, particularly for the unstable phonon modes (compare with figure 2
of reference [24]). Two transverse optic modes are unstable at the0 point, and they remain
unstable along the0–X direction with very little dispersion. One of them stabilizes along
the0–M and X–M directions; and both become stable along the0–R and R–M lines. These
features, which were also observed in KNbO3, indicate chain-like instabilities in real space.
As was already pointed out by Yu and Krakauer [25], the finite thickness of the slab region
of instability corresponds to a minimum correlation length of the displacement required to
observe an unstable phonon mode. From the phonon dispersion curves showed in figure 3, the
length of the shortest unstable chain can be estimated to be≈4 a, which is in agreement with
the estimation made in reference [24].

-200

0

200

400

600

800

F
re

qu
en

cy
 (

cm
-1
)

ΓΓ           X          M              ΓΓ                    R          M

Figure 3. Phonon dispersion curves of BaTiO3 calculated with the optimized model for the cubic
structure at the experimental lattice constant. Imaginary phonon frequencies are represented as
negative values.

The0 phonon frequencies obtained from our model have also been compared with LDA
and experimental results. It can be observed in table 2 that they are in fairly good agreement.
It is worth mentioning also that the eigenvector of the unstable ferroelectric mode as obtained
from the model is given by:eBa = −0.009, eTi = −0.686, eOz

= 0.621, eOy
= eOx

= 0.269,
which is in very good agreement with the previously given one, obtained from the LAPW
calculation.
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Table 2. Comparison of the shell-model IR-active optical phonon frequencies (cm−1) with ab initio
and experimental results.

Mode Shell model First principles Experimenta

TO1 231i 219ib, 239ic Soft
LO1 718 631b 717
TO2 172 166b, 163c 181
LO2 162 159b 180
TO3 447 453b, 454c 487
LO3 443 445b 468

a Experimental values from reference [26].
b LDA calculation from reference [24].
c LDA calculation (present work).

The Born effective charge tensor is conventionally defined as the coefficient of
proportionality between the components of the dipole moment per unit cell and the components
of theκ-sublattice displacement which gives rise to such a dipole moment:

Z∗κ,αβ =
∂Pβ

∂δκ,α
. (1)

For the cubic structure of ABO3 perovskites, this tensor is fully characterized by four
independent numbers. Experimental data [27] had suggested that the amplitude of the
Born effective charges should deviate substantially from the nominal static charges, with
two essential features: the oxygen charge tensor is highly anisotropic, and the Ti and O‖
effective charges are anomalously large. This was confirmed by more recent first-principles
calculations [3–5], demonstrating the crucial role played by the B(d)–O(2p) hybridization as
a dominant mechanism for such anomalous contributions [6]. Although our model does not
explicitly include charge transfer between atoms, it takes into account the contribution of the
electronic polarizability effects through the shell coordinates. So, it is possible to evaluate the
Born effective charge tensor calculating the total dipole moment per unit cell created by the
displacement of a given sublattice of atoms as a sum of two contributions:

Pα = Zκδκ,α +
∑
κ ′
Yκwκ,α. (2)

The first one is the sublattice displacement contribution while the second one is the electronic
polarizability contribution. For small displacements, the shell displacements can be readily
evaluated in the harmonic approximation, thus leading to an expression forZ∗κ,αβ [28]. The
calculated Born effective charges for cubic BaTiO3 are listed in table 3 together with results
obtained within different approaches. The two essential features of the Born effective charge
tensor of BaTiO3 are satisfactorily simulated in the framework of our model.

So far we have shown that our model for BaTiO3 reproduces several zero-temperature
properties which are relevant for this material. To investigate whether the model will prove
successful for describing the temperature-driven structural transitions of BaTiO3, we perform
constant-pressure molecular dynamics (MD) simulations. Shell-model molecular dynamics,
in spite of its long history, is difficult to use due to the treatment of the adiabatic degree of
freedoms, i.e. the shells. Most workers have used a steepest-descent method to relax the
shell positions iteratively to zero-force positions on each step of the molecular dynamics.
Although this procedure has been improved on the basis of conjugate gradient relaxation of
the shells [29], in a typical simulation run an average of ten line searches are made within every
time step of the simulation, reducing greatly the efficiency of the method in comparison with
rigid-ion-model MD simulations. An alternative approach has been introduced by Mitchell
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Table 3. Born effective charges of BaTiO3 in the cubic structure.

Z∗Ba Z∗Ti Z∗O⊥ Z∗O‖ Reference

Nominal + 2 + 4 −2 −2

Experiment + 2.9 + 6.7 −2.4 −4.8 [27]

First principles + 2.75 + 7.16−2.11 −5.69 [5]
+ 2.70 + 7.10 −2.12 −5.56 [4]

Shell model (static) + 1.86 + 3.18−1.68 −1.68 Present work

Shell model (dynamic) + 1.93 + 6.45−2.3 −3.79 Present work

and Fincham [30] by assigning a small mass to the shells. Thus, their motion, like those of the
cores, is found by numerical integration of their equations of motion. They showed that the
results of this method are independent of the shell mass, provided that it is small enough, and
in agreement with those obtained using relaxation of massless shells. Regarding the efficiency
of the method, the shortcoming of this approach is that the time step of the simulation must be
reduced in order to provide enough accuracy for the integration of the shell coordinates.

We applied the latter approach in the present MD simulation, which is carried out using
the DL-POLY package†. The runs were performed employing a Hoover constant–(σ̄ , T )

algorithm with external stress set to zero; all cell lengths and cell angles were allowed to
fluctuate. Periodic boundary conditions over 7× 7× 7 primitive cells were considered; the
basic molecular dynamics cell therefore contained 1715 ions (plus 1715 shells which are
additional degrees of freedom). The time step was 0.4 fs, which provided enough accuracy
for the integration of the shell coordinates. The total time of each simulation, after 2 ps of
thermalization, was 20 ps.

In figure 4 (top panel) we plot the order parameters (the three components of the mean
polarization) as a function of temperature. The cell lattice constants are displayed in figure 4
(bottom panel). At high temperatures, the averaged polarizationspx , py , andpz are all very
close to zero and the three lattice constants have almost identical values. As the system is
cooled down below 190 K,px acquires a value clearly different from zero, whilepy ' pz ' 0,
and the structure presents a considerable tetragonal strain (see figure 4 (bottom panel)). This
indicates the transition from the paraelectric cubic to the ferroelectric tetragonal phase. When
the temperature is further reduced, the two lower ferroelectric phases appear: the orthorhombic
one below∼120 K, with clearly finitepx ' py and stillpz ' 0, and finally the rhombohedral
phase below∼90 K, with approximately equal values of the three polarization components.

The structural parameters and spontaneous polarizations, for the different phases of
BaTiO3, obtained by the MD simulations are compared with the experimental results in table 4.
An excellent overall agreement is obtained, showing that our model reproduces the delicate
structural changes involved in the transitions. On the other hand, the theoretically determined
transition temperatures tend to be too small compared with experiment. The orthorhombic
and tetragonal phases are stabilized over temperature ranges of only≈30 K and≈70 K,
respectively. Similar features are obtained with the effective Hamiltonian approach [9]. The
remarkable point, however, is that the non-trivial phase transition sequence of BaTiO3 is
correctly reproduced.

† DL-POLY is a package of molecular simulation routines written by W Smith and T R Forester, Daresbury and
Rutherford Appleton Laboratory, Daresbury, UK.
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Figure 4. The phase diagram of BaTiO3 resulting from the MD simulation. Top panel: the three
components of the average polarization (each one represented with a different symbol); and bottom
panel: the corresponding cell parameters (again, each one represented with a different symbol) as
functions of temperature.

Since ferroelectricity is very sensitive to volume, the neglect of thermal expansivity in the
effective Hamiltonian models could be thought to be responsible for the shifts in the predicted
transition temperatures relative to experiment. Our model, however, takes into account the
anharmonic interactions among all phonon modes which are responsible for thermal expansion,
and, nevertheless, a similar behaviour is obtained for the transition temperatures. This seems
to indicate that LDA methods underestimate the ferroelectric instabilities of BaTiO3.

In order to verify that the thermal expansion is properly described by our model, we study
the behaviour of the pseudocubic lattice parametera = V −1/3, whereV is the cell volume, as a
function of temperature. From these data we obtain the expansion coefficients for the different
phases listed in table 4. The agreement with the experimental values is quite satisfactory. In
order to make a detailed comparison of the thermal expansivity with experimental data [32],
we need to rescale the theoretical transition temperatures, since they do not agree with the
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Table 4. Structural parameters, cube-edge components of spontaneous polarization, and expansion
coefficients for the different phases of BaTiO3. For the orthorhombic phase, the equivalent
pseudomonoclinic cell parameters are reported.

Parameter MD simulation Experiments

Rhombohedral

a (Å) 4.012 4.003a

α (deg) 89.81 89.84a

P (µC cm−2) 12.5 13b–19c

α (10−6 ◦C−1) 7.2 5.2d

Orthorhombic

a (Å) 3.995 3.987a

b = c (Å) 4.022 4.018a

P (µC cm−2) 14 14b–25c

α (10−6 ◦C−1) 4.3 4.6d

Tetragonal

a (Å) 4.002 3.999a

c (Å) 4.043 4.036a

P (µC cm−2) 17 17b–27c

α (10−6 ◦C−1) 7.7 6.5d

Cubic

a (Å) 4.016 4.012e

α (10−6 ◦C−1) 8.5 9.8d

a Neutron diffraction data from reference [23].
b Calculated from the atomic positions, reference [23].
c Direct polarization measurements from reference [32].
d Dilatometric measurements from reference [33].
e From reference [22].

experimental ones. We therefore linearly rescale the theoretical temperatures such that the end
points of the stability range of each phase coincide with the experimentalTcs. In addition,
in order to ensure that the graph preserves the expansion coefficients obtained, i.e. the slope
within each phase, we perform the same rescaling of the ordinate values. In figure 5 we plot
(a−a0)/a0 versusT for both the theoretical and experimental results, wherea0 is the value of
a at 0 K. It is interesting to note the volume anomalies at the phase transitions resulting from the
model simulation, a feature also observed experimentally, which indicate that the transitions
are all first order. In particular, the remarkable volume expansion at the Curie transition is
in very good agreement with the dilatometric measurements carried out on polycrystalline
samples [32]. According to these investigations, a small volume contraction is found for the
lowest transition, while a small volume expansion results from the model simulation. However,
one cannot be confident that this is a precise result due to the small temperature range of stability
of the orthorhombic phase in our simulation.

In conclusion, we have developed an atomistic model for BaTiO3 which describes
its structural instabilities, phonon dispersion curves, and dynamical effective charges in
satisfactory agreement with LDA calculations. A further molecular dynamics simulation
allowed us to evaluate the phase diagram, reproducing correctly the non-trivial phase transition
sequence of BaTiO3. The structural parameters and coefficients of expansion are in very good
agreement with experimental data, while the theoretically determined transition temperatures
tend to be too small compared with experiment.
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Reṕublica Argentina. MGS also thanks Consejo de Investigaciones de la Universidad Nacional
de Rosario and FONCyT for support.

References

[1] Cohen R and Krakauer H 1990Phys. Rev.B 426416
[2] Cohen R 1992Nature358136
[3] Resta R, Posternak M and Baldereschi A 1993Phys. Rev. Lett.701010
[4] Ghosez P H, Gonze X and Michenaud J-P 1994Ferroelectrics15391
[5] Zhong W, King-Smith R D and Vanderbilt D 1994Phys. Rev. Lett.723618
[6] Posternak M, Resta R and Baldereschi A 1994Phys. Rev.B 508911
[7] Singh D 1995Ferroelectrics164143
[8] Tinte S, Stachiotti M, Rodriguez C O, Novikov D L and Christensen N E 1998Phys. Rev.B 5811 959
[9] Zhong W, Vanderbilt D and Rabe K 1994Phys. Rev. Lett.731861

Zhong W, Vanderbilt D and Rabe K 1995Phys. Rev.B 526301
[10] Lewis G V and Catlow C R A 1985J. Phys. C: Solid State Phys.181149

Lewis G V and Catlow C R A 1986J. Phys. Chem. Solids4789
[11] Donnerberg H and Bartram R 1996J. Phys.: Condens. Matter8 1687
[12] Heifets E, Dorfman S, Fuks D and Kotomin E 1997Thin Solid Films26976
[13] Migoni R, Bilz H and B̈auerle D 1976Phys. Rev. Lett.371155
[14] Perry C, Currat R, Buhay H, Migoni R, Stirling W and Axe J 1989Phys. Rev.B 398666
[15] Kugel G E, Fontana M D and Kress W 1987Phys. Rev.B 35813
[16] Sepliarsky M, Stachiotti M and Migoni R 1995Phys. Rev.B 524044

Sepliarsky M, Stachiotti M and Migoni R 1997Phys. Rev.B 56566



9690 S Tinte et al

[17] Stachiotti M G, Sepliarsky M, Migoni R L and Rodriguez C O 1998First-Principles Calculations for Ferro-
electrics (AIP Conf. Proc. No 436)ed R E Cohen (Woodbury, NY: AIP) p 274

[18] Khatib D, Migoni R, Kugel G and Godefroy 1989J. Phys.: Condens. Matter1 9811
[19] Blaha P, Schwarz K, Dufek P and Augustyn R 1997WIEN97Technical University of Vienna

This is an improved and updated Unix version of the original copyrighted WIEN code, which was published by
Blaha P, Schwarz K, Sorantin P and Trickey S B 1990Comput. Phys. Commun.59399

[20] Ceperley D M and Alder B J 1980Phys. Rev. Lett.45566
[21] Perdew J P and Zunger A 1981Phys. Rev.B 235048
[22] Kay H F and Vousden P 1949Phil. Mag.401019
[23] Kwei G H, Lawson A C, Billinge S J L andCheong S-W 1993J. Phys. Chem.972368
[24] Ghosez P H, Gonze X and Michenaud J-P 1998Ferroelectrics206205
[25] Yu R and Krakauer H 1995Phys. Rev. Lett.744067
[26] Nakamura T 1992Ferroelectrics13765
[27] Axe J D 1967Phys. Rev.157429
[28] Chen H and Callaway J 1992Phys. Rev.B 452085
[29] Lindam P J and Gillan M J 1993J. Phys.: Condens. Matter5 1019
[30] Mitchell J P and Fincham D 1993J. Phys.: Condens. Matter5 1031
[31] Mitsui T et al 1981Landolt–B̈ornstein New SeriesGroup III, vol 16 (Berlin: Springer)
[32] Shirane G and Takeda A 1952J. Phys. Soc. Japan7 1


